36 research outputs found

    On constrained Markov-Nikolskii type inequality for k−k-absolutely monotone polynomials

    Full text link
    We consider the classical problem of estimating norms of higher order derivatives of algebraic polynomial via the norms of polynomial itself. The corresponding extremal problem for general polynomials in uniform norm was solved by A. A. Markov. In 1926,1926, Bernstein found the exact constant in the Markov inequality for monotone polynomials. T. Erdelyi showed that the order of the constants in constrained Markov-Nikolskii inequality for k−k- absolutely monotone polynomials is the same as in the classical one in case 0<p≀q≀∞.0<p\le q\le\infty. In this paper, we find the exact order for all values of 0<p,q≀∞.0<p,q\le\infty. It turned out that for the case q<pq<p constrained Markov-Nikolskii inequality can be significantly improved.Comment: Journal reference adde

    A note on multiplicative automatic sequences, II

    Get PDF
    We prove that any qq-automatic multiplicative function f:N→Cf:\mathbb{N}\to\mathbb{C} either essentially coincides with a Dirichlet character, or vanishes on all sufficiently large primes. This confirms a strong form of a conjecture of J. Bell, N. Bruin, and M. Coons

    A note on multiplicative automatic sequences

    Get PDF
    We prove that any qq-automatic completely multiplicative function f:N→Cf:\mathbb{N}\to\mathbb{C} essentially coincides with a Dirichlet character. This answers a question of J. P. Allouche and L. Goldmakher and confirms a conjecture of J. Bell, N. Bruin and M. Coons for completely multiplicative functions. Further, assuming two standard conjectures in number theory, the methods allows for removing the assumption of completeness

    Mean values and correlations of multiplicative functions : the ``pretentious" approach

    Full text link
    Le sujet principal de cette thĂšse est l’étude des valeurs moyennes et corrĂ©lations de fonctions multiplicatives. Les rĂ©sultats portant sur ces derniers sont subsĂ©quemment appliquĂ©s Ă  la rĂ©solution de plusieurs problĂšmes. Dans le premier chapitre, on rappelle certains rĂ©sultats classiques concernant les valeurs moyennes des fonctions multiplicatives. On y Ă©nonce Ă©galement les thĂ©orĂšmes principaux de la thĂšse. Le deuxiĂšme chapitre consiste de l’article “Mean values of multiplicative functions over the function fields". En se basant sur des rĂ©sultats classiques de Wirsing, de Hall et de Tenenbaum concernant les fonctions multiplicatives arithmĂ©tiques, on Ă©nonce et on dĂ©montre des thĂ©orĂšmes qui y correspondent pour les fonctions multiplicatives sur les corps des fonctions Fq[x]. Ainsi, on rĂ©soud un problĂšme posĂ© dans un travail rĂ©cent de Granville, Harper et Soundararajan. On dĂ©crit dans notre thĂ©se certaines caractĂ©ristiques du comportement des fonctions multiplicatives sur les corps de fonctions qui ne sont pas prĂ©sentes dans le contexte des corps de nombres. Entre autres, on introduit pour la premiĂšre fois une notion de “simulation” pour les fonctions multiplicatives sur les corps de fonctions Fq[x]. Les chapitres 3 et 4 comprennent plusieurs rĂ©sultats de l’article “Correlations of multiplicative functions and applications". Dans cet article, on dĂ©termine une formule asymptotique pour les corrĂ©lations X n6x f1(P1(n)) · · · fm(Pm(n)), oĂč f1, . . . ,fm sont des fonctions multiplicatives de module au plus ou Ă©gal Ă  1 ”simulatrices” qui satisfont certaines hypothĂšses naturelles, et P1, . . . ,Pm sont des polynomes ayant des coefficients positifs. On dĂ©duit de cette formule plusieurs consĂ©quences intĂ©ressantes. D’abord, on donne une classification des fonctions multiplicatives f : N ! {−1,+1} ayant des sommes partielles uniformĂ©ment bornĂ©es. Ainsi, on rĂ©soud un problĂšme d’Erdos datant de 1957 (dans la forme conjecturĂ©e par Tao). Ensuite, on dĂ©montre que si la valeur moyenne des Ă©carts |f(n + 1) − f(n)| est zĂ©ro, alors soit |f| a une valeur moyenne de zĂ©ro, soit f(n) = ns avec iii Re(s) < 1. Ce rĂ©sultat affirme une ancienne conjecture de KĂĄtai. Enfin, notre thĂ©orĂšme principal est utilisĂ© pour compter le nombre de reprĂ©sentations d’un entier n en tant que somme a+b, oĂč a et b proviennent de sous-ensembles multiplicatifs fixĂ©s de N. Notre dĂ©monstration de ce rĂ©sultat, dĂ» Ă  l’origine Ă  BrĂŒdern, Ă©vite l’usage de la “mĂ©thode du cercle". Les chapitres 5 et 6 sont basĂ©s sur les rĂ©sultats obtenus dans l’article “Effective asymptotic formulae for multilinear averages and sign patterns of multiplicative functions," un travail conjoint avec Alexander Mangerel. D’aprĂšs une mĂ©thode analytique dans l’esprit du thĂ©orĂšme des valeurs moyennes de HalĂĄsz, on dĂ©termine une formule asymptotique pour les moyennes multidimensionelles x−l X n2[x]l Y 16j6k fj(Lj(n)), lorsque x ! 1, oĂč [x] := [1,x] et L1, . . . ,Lk sont des applications linĂ©aires affines qui satisfont certaines hypothĂšses naturelles. Notre mĂ©thode rend ainsi une dĂ©monstration neuve d’un rĂ©sultat de Frantzikinakis et Host avec, Ă©galement, un terme principal explicite et un terme d’erreur quantitatif. On applique nos formules Ă  la dĂ©monstration d’un phĂ©nomĂšne local-global pour les normes de Gowers des fonctions multiplicatives. De plus, on dĂ©couvre et explique certaines irrĂ©gularitĂ©s dans la distribution des suites de signes de fonctions multiplicatives f : N ! {−1,+1}. Visant de tels rĂ©sultats, on dĂ©termine les densitĂ©s asymptotiques des ensembles d’entiers n tels que la fonction f rend une suite fixĂ©e de 3 ou 4 signes dans presque toutes les progressions arithmĂ©tiques de 3 ou 4 termes, respectivement, ayant n comme premier terme. Ceci mĂšne Ă  une gĂ©nĂ©ralisation et amĂ©lioration du travail de Buttkewitz et Elsholtz, et donne un complĂ©ment Ă  un travail rĂ©cent de MatomĂ€ki, RadziwiƂƂ et Tao sur les suites de signes de la fonction de Liouville.The main theme of this thesis is to study mean values and correlations of multiplicative functions and apply the corresponding results to tackle some open problems. The first chapter contains discussion of several classical facts about mean values of multiplicative functions and statement of the main results of the thesis. The second chapter consists of the article “Mean values of multiplicative functions over the function fields". The main purpose of this chapter is to formulate and prove analog of several classical results due to Wirsing, Hall and Tenenbaum over the function field Fq[x], thus answering questions raised in the recent work of Granville, Harper and Soundararajan. We explain some features of the behaviour of multiplicative functions that are not present in the number field settings. This is accomplished by, among other things, introducing the notion of “pretentiousness" over the function fields. Chapter 3 and Chapter 4 include results of the article “Correlations of multiplicative functions and applications". Here, we give an asymptotic formula for correlations X n_x f1(P1(n))f2(P2(n)) · · · · · fm(Pm(n)) where f . . . ,fm are bounded “pretentious" multiplicative functions, under certain natural hypotheses. We then deduce several desirable consequences. First, we characterize all multiplicative functions f : N ! {−1,+1} with bounded partial sums. This answers a question of Erdos from 1957 in the form conjectured by Tao. Second, we show that if the average of the first divided difference of multiplicative function is zero, then either f(n) = ns for Re(s) < 1 or |f(n)| is small on average. This settles an old conjecture of KĂĄtai. Third, we apply our theorem to count the number of representations of n = a + b where a,b belong to some multiplicative subsets of N. This gives a new "circle method-free" proof of the result of BrĂŒdern. Chapters 5 and Chapter 6 are based on the results obtained in the article “Effective asymptotic formulae for multilinear averages and sign patterns of multiplicative functions," joint with Alexander Mangerel. Using an analytic approach in the spirit of HalĂĄsz’ mean v value theorem, we compute multidimensional averages x−l X n2[x]l Y 16j6k fj(Lj(n)) as x ! 1, where [x] := [1,x] and L1, . . . ,Lk are affine linear forms that satisfy some natural conditions. Our approach gives a new proof of a result of Frantzikinakis and Host that is distinct from theirs, with explicit main and error terms. As an application of our formulae, we establish a local-to-global principle for Gowers norms of multiplicative functions. We reveal and explain irregularities in the distribution of the sign patterns of multiplicative functions by computing the asymptotic densities of the sets of integers n such that a given multiplicative function f : N ! {−1, 1} yields a fixed sign pattern of length 3 or 4 on almost all 3- and 4-term arithmetic progressions, respectively, with first term n. The latter generalizes and refines the work of Buttkewitz and Elsholtz and complements the recent work of Matomaki, RadziwiƂƂ and Tao. We conclude this thesis by discussing some work in progress

    Boundary effect on the nodal length for Arithmetic Random Waves, and spectral semi-correlations

    Get PDF
    We test M. Berry's ansatz on nodal deficiency in presence of boundary. The square billiard is studied, where the high spectral degeneracies allow for the introduction of a Gaussian ensemble of random Laplace eigenfunctions ("boundary-adapted arithmetic random waves"). As a result of a precise asymptotic analysis, two terms in the asymptotic expansion of the expected nodal length are derived, in the high energy limit along a generic sequence of energy levels. It is found that the precise nodal deficiency or surplus of the nodal length depends on arithmetic properties of the energy levels, in an explicit way. To obtain the said results we apply the Kac-Rice method for computing the expected nodal length of a Gaussian random field. Such an application uncovers major obstacles, e.g. the occurrence of "bad" subdomains, that, one hopes, contribute insignificantly to the nodal length. Fortunately, we were able to reduce this contribution to a number theoretic question of counting the "spectral semi-correlations", a concept joining the likes of "spectral correlations" and "spectral quasi-correlations" in having impact on the nodal length for arithmetic dynamical systems. This work rests on several breakthrough techniques of J. Bourgain, whose interest in the subject helped shaping it to high extent, and whose fundamental work on spectral correlations, joint with E. Bombieri, has had a crucial impact on the field.Comment: 40 pages, 2 figure
    corecore